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We study the effects of dissipation on electron transport in a semiconductor superlattice with an applied bias
voltage and a magnetic field that is tilted relative to the superlattice axis. In previous work, we showed that,
although the applied fields are stationary, they act like a terahertz plane wave, which strongly couples the Bloch
and cyclotron motion of electrons within the lowest miniband. As a consequence, the electrons exhibit a unique
type of Hamiltonian chaos, which creates an intricate mesh of conduction channels �a stochastic web� in phase
space, leading to a large resonant increase in the current flow at critical values of the applied voltage. This
phase-space patterning provides a sensitive mechanism for controlling electrical resistance. In this paper, we
investigate the effects of dissipation on the electron dynamics by modifying the semiclassical equations of
motion to include a linear damping term. We demonstrate that, even in the presence of dissipation, determin-
istic chaos plays an important role in the electron transport process. We identify mechanisms for the onset of
chaos and explore the associated sequence of bifurcations in the electron trajectories. When the Bloch and
cyclotron frequencies are commensurate, complex multistability phenomena occur in the system. In particular,
for fixed values of the control parameters several distinct stable regimes can coexist, each corresponding to
different initial conditions. We show that this multistability has clear, experimentally observable, signatures in
the electron transport characteristics.
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I. INTRODUCTION

Semiconductor superlattices �SLs� are nanostructures
made from alternating layers of two different semiconductor
materials, usually with very similar lattice constants, for ex-
ample, GaAs and �AlGa�As �1�. Due to the different energy
band gaps of the two materials, the conduction band edge of
an ideal superlattice is periodically modulated. Typically, a
SL made by molecular beam epitaxy contains 10–100 quan-
tum wells in series, which are coupled by tunnel barriers.
This periodic potential leads to the formation of energy
bands, known as “minibands,” for electron motion perpen-
dicular to the layers �1�. A voltage applied to Ohmic contacts
at the two ends of the SL generates an electric field F per-
pendicular to the plane of the layers �see Fig. 1�, which
causes charge to flow through the device. The current-
voltage characteristics of SLs are usually highly nonlinear
due to a variety of quantum-mechanical effects, including
resonant tunneling, the formation of Wannier-Stark energy
level ladders, and the occurrence of Bloch oscillations �1,2�,
whose frequency is proportional to the spatial period d of the
SL and also to F. In natural crystals, d is so small
��0.3 nm� that Bloch oscillations do not occur because the
Bloch frequency is much less than the electron scattering
rate. But in SLs d and the corresponding Bloch frequency
can be large enough for the electrons to perform Bloch os-
cillations, which then play a key role in both the dc and
high-frequency charge transport processes. The onset of
Bloch oscillations localizes the electrons, thus causing their
drift �average� velocity to decrease as the electric field in-
creases. This negative differential velocity can induce high-
frequency collective oscillations of the conduction electrons
within the SL layers �3�, making SLs attractive for the gen-
eration and detection of electromagnetic radiation in the gi-
gahertz to terahertz frequency range �4–8�.

The occurrence of negative differential velocity for elec-
trons in SLs has also led to fundamentally new regimes of
charge transport involving deterministic chaos, characterized
by complex irregular electron dynamics �1,9,10�. Under-
standing the effects of chaos on the current-voltage charac-
teristics I�V� and high-frequency electromagnetic properties
of SLs is an emerging research area at the interface between
nonlinear dynamics and condensed matter physics. In most
previous studies, chaos in SLs was identified in the coopera-
tive motion of interacting electrons in either periodically
driven �11,12� or undriven SLs �13�.
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FIG. 1. Schematic layer structure of a semiconductor SL formed
from two different semiconductor materials, shaded light and dark
gray. The coordinate axes show the orientation of the tilted mag-
netic field B, which lies in the x-z plane at an angle � to the SL �x�
axis. The lower arrow shows the direction of the electric field F
applied perpendicular to the plane of the layers and antiparallel to
the x axis.
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Recent theoretical and experimental work has revealed
that the single-particle trajectories and collective behavior of
electrons moving through the lowest miniband of a biased
SL with a tilted magnetic field have unique properties
�14–17�. For example, the electrons exhibit an unusual type
of Hamiltonian chaos, known as “non-KAM” chaos �18–20�,
which does not obey the Kolmogorov-Arnold-Moser �KAM�
theorem and provides a sensitive new mechanism for con-
trolling electron transport. The chaotic electron dynamics
created by applying a tilted magnetic field to a SL containing
multiple quantum wells is fundamentally different from that
studied previously for electrons in a single quantum well
�21–39� or semiconductor billiard �21,40�.

Remarkably, the effective classical Hamiltonian for the
electron motion in an SL has an intrinsically quantum-
mechanical origin as it depends explicitly on the energy ver-
sus wave vector dispersion relation of the miniband �14,15�.
Analysis of Hamilton’s equations reveals that the stochastic
electron motion switches on abruptly when the field param-
eters satisfy certain resonance conditions, described in detail
below. The onset of chaos delocalizes the electrons by im-
printing an intricate mesh of conduction channels �known as
a “stochastic web”� in phase space, which produces large
resonant enhancement of the electron velocity and current
flow measured in experiment �15�. This phase-space pattern-
ing provides a fundamentally new concept for controlling
electrical conductance �41� and operates even at room tem-
perature �15�.

In the absence of dissipation, the resonant delocalization
of the conduction electrons would produce a series of
�-function peaks in the I�V� curves. But in real SLs the reso-
nances are broadened because the electrons scatter both elas-
tically �1�, due mainly to roughness at the interfaces between
the tunnel barriers and quantum wells and to ionized donor
atoms, and inelastically, via the emission and absorption of
phonons. When the transport characteristics of SLs are cal-
culated, the effect of scattering on the electron dynamics
must be taken into account in order to obtain I�V� curves that
agree with experiment. In our previous theoretical work
�14,15�, we incorporated electron scattering in the following
phenomenological way. First, we calculated the electron tra-
jectories by solving Hamilton’s equations for the system, as-
suming no scattering. Next, we used these trajectories to de-
termine the average electron velocity from a simple kinetic
formula in which scattering appears a posteriori as an expo-
nential damping term whose decay rate depends on the elas-
tic and inelastic relaxation times. In this paper, we investi-
gate whether the striking electron resonance effects and
phase-space patterning predicted by our earlier collision-free
Hamiltonian model of the electron dynamics persist when
scattering is included a priori in the equations of motion. We
find that, when the scattering is described in this way, it
creates far richer electron dynamics than expected from our
previous Hamiltonian analysis. In particular, scattering
makes the system highly sensitive to changes in the control
parameters �electric and magnetic fields�, which induce com-
plex bifurcation sequences characterized by alternating win-
dows of stability and chaos. Counterintuitively, dissipation
also enhances the resonant delocalization of the semiclassical
trajectories by creating attractors that drive the electrons rap-

idly through the SL. The regimes of dissipative chaos that we
have identified have a pronounced effect on the velocity-field
characteristics of the miniband electrons and provide mecha-
nisms for controlling SL magnetotransport by exploiting
complex nonlinear dynamics.

The structure of the paper is as follows. In Sec. II, we
introduce the semiclassical equations of motion for a mini-
band electron in a tilted magnetic field and show how scat-
tering is included a priori in those equations. In Sec. III, we
show that scattering dramatically changes the electron trajec-
tories and phase-space structure of the system by creating
attractors corresponding to periodic orbits that extend
through the whole SL. In Sec. IV, we present a detailed
analysis of the stability of the electron orbits. Section V ex-
plores the complex series of resonances that scattering in-
duces in the electron dynamics and elucidates the effect of
these resonances on the electron velocity and experimentally
measured electrical current. Finally, in Sec. VI, we summa-
rize our results and draw conclusions.

II. MODEL EQUATIONS

In a SL, quantum-mechanical tunneling broadens the
discrete quantized energy levels of each individual quan-
tum well into SL minibands. The miniband states are delo-
calized Bloch functions specified by the crystal momentum
p= �px , py , pz�=�k, where k is the corresponding elec-
tron wave vector. Within the tight-binding approximation,
the energy versus crystal momentum dispersion relation
for the lowest miniband is E�p�=��1−cos�pxd /��� /2+ �py

2

+ pz
2� /2m*, where � is the miniband width, d is the SL pe-

riod, and m* is the electron effective mass for motion in the
y-z plane. The crystal momentum component px is taken to
lie within the first minizone of the SL.

Throughout this paper, we consider electron motion in an
electric field F= �−F ,0 ,0� applied antiparallel to the x axis,
and a tilted magnetic field B= �B cos � ,0 ,B sin �� �Fig. 1�. In
a semiclassical picture, which neglects interminiband tunnel-
ing, the force produced by the electric and magnetic fields
changes the electron’s crystal momentum at a rate

dp

dt
= − e�F + ��pE�p� � B�� , �1�

where e is the electronic charge. Equation �1� can be written
in the component form

ṗx = eF − �̄cpy tan � , �2�

ṗy =
d�m*�̄c

2�
sin� pxd

�
	tan � − �̄cpz, �3�

ṗz = �̄cpy , �4�

where the left-hand terms are time derivatives of the crystal
momentum components and �̄c=eB cos � /m* is the cyclo-
tron frequency corresponding to the magnetic field compo-
nent along the x axis. It follows from Eqs. �2�–�4� that
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p̈z + �̄c
2pz = C sin�Kpz − �Bt + �� , �5�

where C= �−m*�̄c
2d� tan �� /2�, K=d tan � /�, and �B

=eFd /� is the Bloch frequency. The phase �=d�px�t=0�
+ pz�t=0�tan �� /� depends on the initial conditions and
equals zero for electrons starting from rest �14,15�. Equation
�5� describes completely the electron motion because its so-
lution pz�t� uniquely determines all of the other dynamical
variables �15�. Consequently, to include the effects of dissi-
pation ab initio in the equations of motion, we formally in-
troduce a relaxation term 	ṗz into the left-hand side of Eq.
�5�, which becomes

p̈z + 	ṗz + �̄c
2pz = C sin�Kpz − �Bt + �� , �6�

where 	 is the damping constant. The dissipation term in Eq.
�6� directly affects the in-plane momentum component pz.
But when ��0, electron motion in the x, y, and z directions
is coupled, which means that the dissipation term affects all
of the dynamical variables, thus simulating the scattering
processes that occur in a real SL device.

Recent experiments �42,43� have shown that the presence
of a high magnetic field strongly affects the inelastic scatter-
ing mechanisms required for current to flow through a biased
SL �44�. In particular, when �=0 and ��c
�, the emission
of longitudinal optical �LO� phonons is strongly suppressed
if the phonon energy, ��LO=36 meV in GaAs, exceeds �
�42,43�, which is the case for the SL that we studied in Ref.
�15�. In this low-dissipation regime, the current falls almost
to zero because the oscillatory Bloch motion along the x
direction is not damped by LO phonon emission. Our model
equations �2�–�6� capture this magnetosuppression of the
current, because Eqs. �2� and �4� decouple in the limit �
→0, which means that the x motion is undamped, and so the
mean electron velocity is zero. In the experiments �15�, as �
increases from 0, the current rises dramatically because the
selection rules that prevent LO phonon emission when �=0
are broken. Our model equations �2�–�6� describe this acti-
vation of LO phonon emission by increasing the coupling
between motion parallel and perpendicular to x as � in-
creases from 0, thus enhancing scattering-assisted transport
through the SL. Consequently, the equations encapsulate the
strongly �-dependent scattering rates observed experimen-
tally in the high-magnetic-field regime that is the focus of
this paper. As a consequence, however, they do not accu-
rately describe the strongly damped Bloch motion that oc-
curs in the limit B=0, which we do not consider here.

We used Eq. �6� to investigate the effect of dissipation on
the motion of electrons in SLs similar to those described and
studied experimentally in �14,15�, taking �=26.2 meV, d
=10.3 nm, and m*=0.067me, where me is the mass of a free
electron. In our analysis, we first solve Eq. �6� numerically to
obtain pz�t�, which we then use to determine the other crystal
momentum components,

px = px�t = 0� + eFt − �pz − pz�t = 0��tan � ,

py =
ṗz

�̄c

, �7�

and the electron velocity components

ẋ =
d�

2�
sin�Kpz − �Bt + ��, ẏ =

ṗz

�̄cm
* , ż =

pz

m* . �8�

Equation �6� describes the motion of a damped harmonic
oscillator, whose natural frequency equals the cyclotron fre-
quency �̄c, driven by a plane wave of wave number K and
frequency equal to the Bloch frequency �B. The linear dissi-
pation term describes the coupling of the oscillator to a “res-
ervoir” of many additional degrees of freedom, which, for
the particular case of electrons in an SL, is provided by elas-
tic and inelastic scattering processes.

An undamped harmonic oscillator driven by a plane wave
is one of the few systems known to exhibit non-KAM chaos
�18,19�. Its rich dynamical properties have been studied by
many authors and provide insights for understanding a wide
range of problems in, for example, plasma physics, tokamak
fusion, turbulent fluid dynamics, ion traps, and quasicrystals
�15,18,19�. Some interesting effects of dissipation on non-
KAM chaos, including the identification of Cantor sets in
phase space, were studied in Ref. �20�. But, to our knowl-
edge, the bifurcation phenomena considered in the present
paper, and their relation to resonance effects in SLs, have not
been considered elsewhere. Moreover, what has not been
clear previously is the nature of the characteristic instabilities
and dynamical regimes that can be induced by dissipation in
systems that exhibit non-KAM chaos, or how these regimes
evolve with variation of the control parameters. Our analysis
of such dynamics for electrons in an SL with a tilted mag-
netic field is therefore also of general interest in nonlinear
dynamics and in the diverse areas of physics mentioned
above, which involve the behavior of a harmonic oscillator
driven by a plane wave.

III. EFFECT OF DISSIPATION ON CHAOTIC DYNAMICS

In Ref. �14�, the dynamics of a miniband electron in an
electric and tilted magnetic field were studied in the absence
of dissipation by solving Eq. �6� with 	=0. Two distinct
types of chaotic trajectories were identified from the different
patterns that they produce in the Poincaré sections through
phase space. The first type of pattern occurs only when the
resonance condition

�B = r�̄c �9�

is satisfied, where r is a rational number. At such resonances,
the chaotic orbits map out a stochastic web comprising an
intricate mesh of filaments, which threads the phase space
and is a unique feature of non-KAM chaos. By contrast, the
second type of pattern, a large continuous “chaotic sea” in
the Poincaré section, does not require the resonance condi-
tion to be satisfied.

We now illustrate these two types of chaos and investigate
how the electron dynamics and associated phase-space pat-
terns change when dissipation is introduced by increasing 	
from zero in Eq. �6�. First, we consider the case when the
phase space of the dissipation-free �	=0� system contains a
stochastic web corresponding to the r=1 resonance condition
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attained when F=2.9�105 V m−1, B=2 T, and �=30°. The
black dots in Fig. 2�a�, which merge to form a continuous
pattern, show a stroboscopic Poincaré section constructed
from the electron trajectories by plotting the momentum
components �py , pz� in the plane of the SL layers at discrete
times separated by the Bloch period TB=2� /�B. The
Poincaré section reveals a stochastic web, formed by the
black dots and labeled “0” in Fig. 2�a�, which contains both
ringlike and radial filaments. The radial filaments act as con-
duction channels, which enable the electron to diffuse rap-
idly outward away from the web center, thus increasing its
momentum pL= �py

2+ pz
2�1/2 in the plane of the SL layers. In

real space, the electron progresses rapidly along the SL axis
�45�, gaining kinetic energy from the electric field, which is
transferred into y-z motion by the tilted magnetic field
�14,15�. To illustrate the resonant delocalization of the elec-
tron trajectories that results from stochastic web formation,

the black curve labeled “0” in Fig. 2�b� shows an electron
orbit within the stochastic web projected onto the x-z plane
in which the magnetic field lies �axes inset�. The electron
starts from rest at the left-hand edge of the orbit, which cor-
responds to the center point �py , pz�= �0,0� of the stochastic
web in Fig. 2�a�. A slow modulation of the density of orbital
loops, which gradually increases with increasing x, is the
only indication of irregularity in the electron trajectory la-
beled 0. For this reason, stochastic web chaos is often called
“weak chaos” �19�, because the narrow width of the web
filaments largely suppresses the highly erratic behavior usu-
ally found for nonintegrable systems. As the electron travels
along the orbit from left to right in real space, it diffuses
outward along the almost vertical radial filament in the sto-
chastic web toward higher pz values. The web filaments en-
mesh islands of stability, which are slices through invariant
phase-space tori generated by regular quasiperiodic trajecto-
ries �14,15�. For clarity, in Fig. 2�a� we show no tori corre-
sponding to orbits within these islands of stability.

The inclusion of even a very small dissipation term in Eq.
�6� destroys both the stochastic webs and islands of stability,
replacing them with attracting limit cycles to which all orbits
tend as time progresses. To illustrate this, we first set 	
=1010 s−1, which is far less than the momentum relaxation
rate Wm
1012–1013 s−1 typical of electrons in semiconduc-
tor SL devices �14,15�. For this value of 	, there are several
distinct limit cycles, six of which are marked by the num-
bered and colored triangles in the stroboscopic Poincaré sec-
tion shown in Fig. 2�a�. Each limit cycle appears within, and
attracts trajectories from, one of the islands of stability found
when 	=0. Segments of the electron trajectories for each
limit cycle are shown in Fig. 2�b�. Each orbit is shown over
the same fixed time interval of 9.45 ps, chosen when t is
large enough for the orbit to approach very close to the limit
cycle, and linked, by number and color, to the corresponding
points in the phase-space plot shown in Fig. 2�a�. The orbital
segments reveal that the inclusion of weak dissipation makes
the electron trajectories more regular because each limit
cycle creates a particular repeating loop pattern.

As the level of dissipation increases, the different attract-
ing limit cycles degenerate until only one remains in the
phase space, whose position for 	=1012 s−1 is marked by the
blue circle labeled “7” in Fig. 2�a�. Part of the corresponding
electron orbit is shown by the blue curve labeled “7” at the
bottom of Fig. 2�b�. The simple loop structure of this orbit
transports the electron rapidly through the SL and is qualita-
tively similar to that of orbit 0, which generates the stochas-
tic web in the absence of dissipation. So, although dissipa-
tion completely changes the phase space structure, replacing
the stochastic web with a small number of limit cycles, it
preserves the overall form of the delocalized orbits found
when �B=r�̄c and actually enhances resonant electron trans-
port by preventing the spatial compression of the orbital
loops, which slows the electron in the absence of dissipation
�see, for example, orbit 0 in Fig. 2�b��.

We now consider the second type of Hamiltonian chaos,
which, in the absence of dissipation, produces an extended
chaotic sea in phase space even when �B / �̄c is not a rational
number. The Poincaré section formed by the black dots in
Fig. 3�a� shows the chaotic sea generated by solving Eq. �6�

(a)

(b)

0

FIG. 2. �Color� �a� Black dots: stroboscopic Poincaré section
calculated for the chaotic trajectory executed by an electron starting
from rest in the dissipationless limit 	=0. This section reveals the
inner filaments of a stochastic web. Colored triangles numbered
1–6: Poincaré sections calculated for six coexisting stable limit
cycles formed when 	=1010 s−1. Blue circle numbered 7: Poincaré
section calculated for the single stable limit cycle found when 	
=1012 s−1. �b� Electron trajectories corresponding, by number and
color, to the labeled features in the Poincaré sections shown in �a�.
All orbits are projected onto the x-z plane �axes inset�, have a com-
mon spatial scale shown by the horizontal line whose length is 30
SL periods, and are plotted over a fixed time interval of 9.45 ps.
The field parameters B=2 T, �=30°, and F=2.9�105 V m−1 sat-
isfy the resonance condition �B / �̄c=1.
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for an electron starting from rest in the SL with 	=0, F
=7.5�105 V m−1, B=4.75 T, and �=45°, for which r
�1.33. Introducing dissipation into the equation of motion
affects this type of extended chaotic sea far less than stochas-
tic webs. In particular, although dissipation changes the form
of the chaotic sea and the orbits within it, the orbits remain
unstable and spatially irregular even for fairly large values of
	. The reason is that dissipation transforms the chaotic sea
into a chaotic attractor, rather than into a stable limit cycle
like those labeled 1–6 in Fig. 2. In Fig. 3�a�, the yellow, red,
and green dots show the chaotic attractors generated by plot-
ting �py , pz� at every Bloch period for electron trajectories
starting from rest with, respectively, 	=1010, 1011, and
1012 s−1. The irregular arrangement of points within these
attractors demonstrates that they represent chaotic orbits, a
conclusion that is confirmed by calculating their Lyapunov
exponents. However, with increasing 	, the dimension of the
chaotic attractors diminishes. For the three attractors shown
in Fig. 3�b�, the Lyapunov dimension calculated using the
Kaplan-Yorke formula �46,47� is 2.987, 2.887, and 2.386.

Chaotic electron orbits calculated for 	=0 �black curve�,
1010 �yellow curve�, 1011 �red curve�, and 1012 s−1 �green
curve� are shown projected onto the x-z plane in Fig. 3�b�.
Comparison of the trajectories and Poincaré sections shown
in Figs. 3�a� and 3�b� for different values of 	 reveals that, as
the dissipation increases, the chaotic attractors gradually
contract toward simple curves in phase space and, as a con-
sequence, the orbits become spatially more regular. We em-
phasize that, in spite of the presence of energy dissipation,
the electron trajectories remain chaotic, although their topo-
logical structure in phase space changes as 	 varies over a
wide range of values. In contrast to the Hamiltonian case, the
phase space of the dissipative system contains unstable limit
sets, which attract trajectories from certain regions of phase
space known as basins of attraction. However, for very large
	�1013 s−1, chaos completely disappears, leaving only pe-
riodic orbits in the system.

IV. STABILITY AND BIFURCATION ANALYSIS

In this section, we investigate how the stability of the
electron orbits changes with the field parameters F, B, and �,
and explore the bifurcation sequences that drive the transi-
tion between regular motion and dissipative deterministic
chaos. We consider a fixed value of 	=1012 s−1. First, we
identify different regimes of electron dynamics by calculat-
ing the Lyapunov exponents for those limit sets that attract
trajectories starting from rest. To characterize the stability of
the electron motion, we calculate the largest Lyapunov expo-
nent . The orbit is chaotic if 
0, but otherwise is stable
and regular.

The color map in Fig. 4�a� shows the value of  calculated
as a function of F and B for �=45°. For small F or B, the
system exhibits stable periodic oscillations, of frequency �B,
driven by the plane wave. We call such oscillations “period-1
limit cycles.” As F or B grows, the system undergoes a se-
quence of bifurcations, which eventually leads to the appear-
ance of chaos within the yellow and red areas in Fig. 4�a�,
where 
0. The crosses in Figs. 4�a�–4�c� mark the coordi-
nate in F-B space for which an electron starting from rest
eventually approaches the chaotic attractor shown green in
Fig. 3�b�. The location and shape of the various islands of
stable and chaotic electron motion in the F-B plane �Fig.
4�a�� can be understood by considering the bifurcations that
the limit cycles undergo as F and/or B increases. The black
curves in Fig. 4�b� show the loci of the primary sequence of
period-doubling bifurcations, i.e., those that occur first as F
increases. Each locus encloses a large V-shaped region,
which we call a “period-doubling tongue” surrounding at
least one area of chaos in the F-B plane. When the field
parameters enter one of these period-doubling tongues, the
limit cycle electron trajectory undergoes a period-doubling
bifurcation. As a result of this bifurcation, the initial limit
cycle loses its stability and, in its vicinity, another stable
limit cycle appears whose period is twice as long.

A second type of bifurcation, namely, the saddle-node bi-
furcation for limit cycles, also plays a key role in the electron
dynamics. Loci of the primary saddle-node bifurcations are
shown by the green curves in Fig. 4�b�, which enclose

(b)

(a)

FIG. 3. �Color� �a� Black dots: stroboscopic Poincaré section
calculated for an electron trajectory starting from rest in the dissi-
pationless limit 	=0. Colored dots: stroboscopic Poincaré sections
calculated for the chaotic attractors of electrons starting from rest
when 	=1010 �yellow dots�, 1011 �red dots�, and 1012 s−1 �green
dots�. �b� Electron trajectories corresponding, by specified value of
	 and color, to the Poincaré sections shown in �a�. All orbits are
projected onto the x-z plane �axes inset�, have a common spatial
scale shown by the horizontal line whose length is 10 SL periods,
and are plotted over a fixed time interval of 22.68 ps, which is long
enough to reveal the form of the electron trajectories. B=4.75 T,
�=45°, F=7.5�105 V m−1, r�1.33.
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“saddle-node” tongues indicated by the green shaded
areas. The top edges of these tongues are close to those
of the period-doubling bifurcation loci �black curves in
Fig. 4�b�� and lie near the lines F=r�e� cos � /m*ed�B
�r=1,1 /2,1 /3, . . . � along which �B=r�̄c. Consequently,
each of the period-doubling and saddle-node tongues can be
associated with a particular value of r �those for r
=1,1 /2,1 /3, . . . are labeled in Fig. 4�b��, which relates to a
resonance of a period-1 cycle. Note, however, that when 	
�0 nonlinear resonances can occur near, but not exactly at,
field values for which r is a rational number. When the field
coordinate �F ,B� enters a saddle-node tongue, a new stable
limit cycle is created, which corresponds to an unbounded
electron trajectory, like that labeled “7” in Fig. 2�a� for r
=1. This new limit cycle is twinned with an unstable saddle

counterpart. As the field coordinate �F ,B� leaves the bound-
ary of the saddle-node tongue, the stable and saddle cycles
approach one another in phase space and eventually combine
via the saddle-node bifurcation that occurs at the edge of the
tongue �we consider this process in more detail below�. At
this bifurcation point, the stable and unstable saddle cycles
both disappear, and the electron trajectory jumps abruptly
onto another stable orbit located in a different part of phase
space.

Within the area of F-B space bounded by each of the
primary period-doubling tongues in Fig. 4�b�, the system un-
dergoes a cascade of additional bifurcations. In Fig. 4�c�, we
illustrate this for the region of F-B space enclosed by the r
=1 primary period-doubling bifurcation �outer black curve�.
Within this region, further period-doubling and saddle-node
bifurcations occur along the black and green curves, respec-
tively. For example, the sharp saddle-node and period-
doubling tongues whose apexes are at �F ,B���5
�105 V m−1,2 T� in Fig. 4�c� are associated with the r=2
nonlinear resonance and produce orbits of period 2TB. Due to
the presence of multiple tongues, the bifurcation diagram
exhibits a complex self-similar structure. It is characterized
by a cascade of bifurcations, which drives into chaos the
electron trajectories that start from rest. These chaotic trajec-
tories lie within the yellow and red areas of Figs. 4�a� and
4�c�, where 
0.

An interesting effect occurs within those regions of F-B
space where period-doubling and saddle-node tongues inter-
sect, for example, the area marked by the cross in Fig. 4�c�.
As noted above, each period-doubling tongue contains a
family of attractors. But, in addition, the corresponding
saddle-node tongue contains a distinct stable limit cycle and
a saddle �unstable� periodic orbit. Consequently, in the over-
lap region, at least two different attracting limit sets can co-
exist, which means that multistability occurs in the system.
The initial condition of the orbit determines which attractor it
eventually approaches.

To reveal in detail the bifurcations that the system under-
goes inside the tongues in Fig. 4�c�, we now consider how
the electron orbits change as B increases along the blue ar-
row in Fig. 4�c� with fixed F=3�105 V m−1. In particular,
we construct the single-parameter bifurcation diagram shown
in Fig. 5 by finding the limit sets that attract electrons start-
ing from rest for 0.5�B�3 T and, for each B, plotting the
values that pz attains �black dots in the figure� whenever ṗz
=0 in the limit cycle. For B�1.15 T, this attractor is a
period-1 cycle, which produces a single black dot in Fig. 5�a�
at a pz value that gradually increases with increasing B.
When B
1.15 T, the period-1 cycle undergoes a period-
doubling bifurcation, labeled PD1 in Fig. 5�a�, which corre-
sponds to entering the r=1 primary period-doubling tongue
enclosed by the outer black curve in Fig. 4�c�. As a result, pz
takes one of two values when ṗz=0, causing the black dots to
split into two distinct branches in Fig. 5�a�. As B increases
further, the limit cycle for electrons starting from rest under-
goes a sequence of additional period-doubling bifurcations,
leading to the onset of chaos when B
1.85 T. Thereafter,
chaotic motion alternates with “stability windows,” which is
a characteristic feature of chaos induced by a cascade of
period-doubling bifurcations �47�, and suddenly disappears
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FIG. 4. �Color� �a� Color map showing  calculated as a func-
tion of F and B for the attractors approached by electron trajectories
starting from rest. The color scale is shown on the right. �b� Black
�green� curves are loci of the primary period-doubling �saddle-
node� bifurcations of limit cycles corresponding to resonances with
rational r values �marked for r=1,1 /2,1 /3�. Light green shaded
areas are saddle-node tongues. �c� Location of chaotic attractors
�red areas where 
0� and additional bifurcations within the re-
gion of F-B space bounded by the r=1 primary period-doubling
bifurcation �outer black curve�. Black �green� curves are loci of
period-doubling and saddle-node bifurcations corresponding to ra-
tional values of r�1. Light green shaded areas are saddle-node
tongues. Dashed line marks B=2 T, and blue arrow shows the path
through F-B space corresponding to the bifurcation diagram in Fig.
5. In all panels, crosses mark �F ,B� coordinate corresponding to the
chaotic orbit shown �green� in Fig. 3�b�. �=45° and 	=1012 s−1.
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when B�2.461 T, near the r=1 nonlinear resonance, which
occurs at the B value marked by the arrow in Fig. 5�a�. This
suppression of chaos occurs because the attractor for elec-
trons starting from rest switches back to a stable period-1
cycle owing to a “boundary crisis,” which we explain in
detail below. At this transition from chaotic to stable motion,
the distribution of black dots in Fig. 5�a�, which is shown
more clearly in the enlargement in Fig. 5�b�, changes from an
irregular scatter to an ordered set of points located along a
single-valued curve.

To gain further insights into the electron dynamics, we
now consider the nature and evolution of period-1 cycles in
the system over the entire range of B values shown in Fig.
5�a�. To do this, we plot colored circles in Fig. 5 showing the
values of pz whenever ṗz=0 in the period-1 cycle. If the
period-1 cycle is stable �unstable� we plot a red �green�
circle. For B�1.15 T, the period-1 orbit is stable and is the
only attractor in the system, being the limit cycle that all
trajectories approach irrespective of their initial conditions.

At the first period-doubling bifurcation �labeled PD1 in
Fig. 5�a��, the period-1 cycle becomes unstable �and there-
fore no longer an attractor� and coexists with the period-
doubled stable limit cycle produced by the bifurcation. When
B reaches �2.45 T �labeled SN1 in Figs. 5�a� and 5�b�� it
enters the r=1 primary saddle-node tongue shown in Fig.
4�c�. The associated saddle-node bifurcation creates new
stable and unstable saddle period-1 cycles, which generate,

respectively, the red and upper green circles in Figs. 5�a� and
5�b�.

Thus, the two new period-1 cycles formed by the saddle-
node bifurcation coexist with the original period-1 cycle,
which produces the lower colored circles in Fig. 5. This
original period-1 cycle stabilizes �circles change from green
to red� when B reaches �2.67 T and therefore crosses the
upper edge of the r=1 primary period-doubling tongue
shown in Fig. 4�c�. At a slightly higher B value of �2.73 T,
it coalesces with the unstable saddle period-1 cycle and
thereby disappears as a result of saddle-node bifurcation
SN2. At this bifurcation, the field coordinate �F ,B� exits
through the upper edge of the r=1 primary saddle-node
tongue in Fig. 4�c�.

At higher B values there is a single period-1 cycle, which
is the only attractor in the system. Note that the nonlinear
r=1 resonance has a pronounced effect on the bifurcation
diagram in Fig. 5. In particular, it gives rise to the character-
istic loop formed by the different branches of the period-1
limit cycles that coexist between bifurcations SN1 and SN2
in Fig. 5�a� and also causes the abrupt disappearance of the
chaotic attractor at the boundary crisis BC. We now consider
the latter in more detail.

As explained above, Fig. 5 reveals a small field range
between B�2.450 and �2.461 T �i.e., between the points
labeled SN1 and BC in the figure� where two distinct attrac-
tors coexist, a chaotic one and the stable period-1 limit cycle.
Figure 6�a� shows a stroboscopic Poincaré section calculated
for the chaotic attractor �black dots�, stable period-1 limit
cycle �red circle�, and unstable saddle period-1 limit cycle
�green circle� constructed by plotting the momentum compo-
nents �py , pz� at times t= lTB �l=0,1 ,2 , . . . � when B
=2.46 T, i.e., just before the boundary crisis that destroys the
chaotic attractor. Each attractor has a distinct basin of attrac-

FIG. 5. �Color� �a� Poincaré sections constructed by plotting pz

whenever ṗz=0 along limit cycles for electrons starting from rest
�black dots� and for stable �unstable� period-1 limit cycles �red
�green� circles� with F=3�105 V m−1, �=45°, and 	=1012 s−1. In-
creasing B induces period-doubling �PD1, PD2� and saddle-node
�SN1, SN2� bifurcations, which correspond to crossing the black
and green curves along the blue arrow in Fig. 4�c�, and a boundary
crisis �BC�. Arrow marks B value for which r=1. �b� An enlarge-
ment of the Poincaré section in the vicinity of saddle-node bifurca-
tion SN1 and boundary crisis BC.

FIG. 6. �Color� Stroboscopic Poincaré sections calculated at
times t= lTB �l=0,1 ,2 , . . . � when B� �a� 2.46 T just before bound-
ary crisis, �b� 2.461 T at the boundary crisis. The sections are con-
structed by plotting �py , pz� whenever ṗz=0 along the chaotic attrac-
tor for electrons starting from rest �black dots�, and for the stable
period-1 limit cycle �red circles� and unstable saddle period-1 limit
cycle �green circles�, which are formed by saddle-node bifurcation
SN1 in Fig. 5. White �gray� regions are basins of attraction for the
chaotic attractor and stable period-1 limit cycle respectively. Arrows
in �a� pointing toward �away from� the green circle represent stable
�unstable� manifolds of the unstable saddle period-1 limit cycle.
Arrow and dotted curve in �b� show the direction along which the
electron trajectory eventually leaves the chaotic attractor and sub-
sequently approaches the stable period-1 limit cycle. F=3
�105 V m−1, �=45°, and 	=1012 s−1.
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tion comprising the set of initial conditions for which the
trajectory will eventually approach the attractor. The basins
of attraction for the chaotic set and period-1 limit cycles are
shown, respectively, by the white and gray areas of the py-pz
plane in Fig. 6�a�. Note that the boundary between these two
basins of attraction is the stable manifold of the unstable
saddle periodic orbit �green circle�, which originates from
the saddle-node bifurcation labeled SN1 in Fig. 5. Trajecto-
ries with initial conditions exactly on this stable manifold
approach the unstable saddle periodic orbit along the direc-
tions shown by the arrows pointing toward the green circle in
Fig. 6�a�. Conversely, the unstable manifold of the saddle,
represented schematically by the two arrows pointing away
from the green circle in Fig. 6�a�, repels electron trajectories
away from the vicinity of the saddle orbit. Note that the
lower right-hand part of the chaotic attractor in Fig. 6�a�
approaches very close to the boundary of its �white� basin of
attraction. This suggests that, if changing B increases the size
of the chaotic attractor, there will be a boundary crisis, which
occurs when an attractor hits the boundary of its basin of
attraction.

To investigate this possibility, we studied how the phase-
space structure shown in Fig. 6�a� responds to small changes
of B. Our calculations confirm that increasing B to �2.461 T
does indeed trigger a boundary crisis, which causes the
abrupt disappearance of the chaotic attractor at the field
value labeled BC in Fig. 5. To illustrate this, Fig. 6�b� shows
the stroboscopic Poincaré section calculated for the chaotic
set �black dots�, stable period-1 limit cycle �red circle�, and
unstable saddle period-1 limit cycle �green circle� at the
boundary crisis. The lower right-hand edge of the chaotic
attractor touches the saddle �green circle�, which, for lower
B, was located on the boundary between the basins of attrac-
tion of the chaotic and period-1 attractors �Fig. 6�a��. When
the chaotic attractor and saddle point touch at the boundary
crisis, all trajectories that approach the chaotic attractor
eventually leave it at the bottom right-hand tip in Fig. 6�b�,
then cross the curve in the py-pz plane that used to separate
the two basins of attraction, and thereafter move in the di-
rection of the arrow along the dotted curve in Fig. 6�b� to-
ward the stable period-1 limit cycle �red circle�. Conse-
quently, for all initial conditions, the electron trajectory
eventually approaches the stable period-1 limit cycle, either
directly or via the tip of the former chaotic attractor, which
now allows the electron trajectories to escape. Over the field
range between the boundary crisis and the second period-
doubling transition �i.e., between the fields labeled BC and
PD2 in Fig. 5� the period-1 limit cycle is therefore the only
attractor in the system and its basin of attraction �gray in Fig.
6�b�� fills the entire phase space.

We now consider how the attractors evolve as B sweeps
either up or down through the boundary crisis. As noted
above, for B values in the range �1.15 to �2.45 T �i.e.,
between points PD1 and SN1 in Fig. 5�, the chaotic set
�black dots in Fig. 5� is the only attractor in the system. As B
increases above �2.467 T, the state of the system remains
pinned to the chaotic attractor even though a second attractor
�red circles in upper part of Fig. 5� emerges from the saddle-
node bifurcation labeled SN1 in Fig. 5. When B reaches the
value at which the boundary crisis occurs, the system state

changes abruptly from chaotic to the period-1 attractor, as
discussed above. Conversely, if B now decreases, the state
remains pinned to the period-1 attractor until the saddle-node
bifurcation SN1 �where the red and green circles meet in Fig.
5�b�� removes this attractor when B�2.45 T, i.e., at a field
value below that corresponding to the boundary crisis. Con-
sequently, the transition between chaotic attractors and regu-
lar limit cycles occurs at a higher B value when the field
sweeps up through the boundary crisis than when it sweeps
down, and the system exhibits hysteresis. For given F, the
hysteresis occurs over the magnetic field range for which the
r=1 saddle-node tongue, shown by the upper green region in
Fig. 4�c�, overlaps with the upper red island in the figure, in
which the attractor is chaotic. Figure 4�c� shows that this
overlap region broadens with increasing F, meaning that the
hysteresis becomes more pronounced, that is, it extends over
a wider magnetic field range. The occurrence of hysteresis in
bifurcation diagrams like Fig. 5 is a common feature of reso-
nances in nonlinear systems �48�.

Note that two distinct mechanisms cause the onset of cha-
otic limit cycles in the system. As B increases from 0, the
transition to chaos occurs via the cascade of period-doubling
bifurcations shown in Fig. 5. Conversely, as B decreases
from 3 T, chaos switches on abruptly at the saddle-node bi-
furcation �point SN1 in Fig. 5� that removes the stable
period-1 limit cycle.

The two main mechanisms responsible for the onset of
chaos �the period-doubling sequence and saddle-node bifur-
cation� occur for a wide range of � values. This can be seen
from Fig. 7, which shows the loci of the main period-
doubling �yellow curves� and saddle-node �green curves� bi-
furcations in the F-� plane calculated for fixed B=2 T. These
loci are overlaid on a color map showing the value of the
largest Lyapunov exponent for the limit cycles approached
by electron trajectories starting from rest. Note that, as in
Fig. 4, the limit cycles become chaotic �yellow or red in the
color map� within the regions of F-� space bounded by the
period-doubling bifurcations �yellow lines�, which partially
overlap the areas enclosed by the saddle-node bifurcations

FIG. 7. �Color� �a� Color map showing  calculated as a func-
tion of F and � for the attractors approached by electron trajectories
starting from rest when B=2 T and 	=1012 s−1. Color scale is
shown on the right. Yellow �green� curves are loci of period-
doubling �saddle-node� bifurcations of electron limit cycles. Cross
marks �F ,�� coordinate corresponding to limit cycle 7 in Fig. 2.
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�green lines�. As a consequence of this overlap, multistabil-
ity, and the associated hysteretic evolution of limit cycles,
occurs for a range of F and � in the same way that hysteresis
occurs within islands in the F-B plane �see Fig. 4�. Note,
however, that for the particular field value B=2 T used to
calculate Fig. 7, chaos occurs only for �
40°. For smaller
values of �, electrons starting from rest approach only stable
limit cycles, for example that labeled “7” in Fig. 2, which is
calculated for the �F ,�� coordinate marked by the cross in
Fig. 7.

V. THE EFFECT OF RESONANCES
ON ELECTRON VELOCITY

In Sec. II, we showed that electron motion in the SL can
be described by Eq. �6�, corresponding to a damped har-
monic oscillator driven by a plane wave. When the driving
frequency, �B�F, is commensurate with the natural fre-
quency, �c�B, of the harmonic oscillator, nonlinear reso-
nances occur in the system. The effect of such resonances on
the electron dynamics is complex. For example, in Secs. III
and IV, we saw that the r=1 resonance creates a stable limit
cycle, which corresponds to a spatially unbounded electron
trajectory, via a saddle-node bifurcation, and also triggers a
boundary crisis. In this section, we investigate how reso-
nances affect the momentum and drift velocity of the elec-
trons, both parallel and perpendicular to the SL layers. We
focus on these dynamical variables because they strongly
influence the transport characteristics, such as I�V� curves,
measured in experiments �15�.

First, we consider how resonances affect the variation of
the in-plane momentum component pz as the electron per-
forms a limit cycle. This momentum component is the most
natural parameter to study because it is the dependent vari-
able in Eq. �6�. For each limit cycle, we define the amplitude
of the pz oscillations to be A= �pz

max− pz
min� /2, where pz

min and
pz

max are, respectively, the minimum and maximum values of
pz attained during the limit cycle. We then investigate how A
varies with F for several different limit cycles, including
those produced by the bifurcations induced by changing F.
In Fig. 8�a�, we show A calculated as a function of F for
period-1 �circles� and period-2 �triangles� limit cycles when
B=2 T and �=45°. The A�F� plots, analogous to the fre-
quency response curves familiar to engineers, exhibit the
resonant features that characterize nonlinear dissipative sys-
tems. The resonances are clearly seen as sharp increases of A
when r is close to rational �49�, with the largest peaks �ar-
rowed in Fig. 8�a�� occurring near the F values for which r
=1 and 2. The smaller peaks seen at lower F correspond to
rational r�1. A period-1 limit cycle exists over the entire
range of F shown in Fig. 8�a�, but undergoes bifurcations as
F increases, which changes it between stable �red circles�
and unstable �green circles�. The location of the primary bi-
furcations for B=2 T and �=45° can be seen from Fig. 7.
For F values close to 2.35�105 V m−1, when r�1, there is
a saddle-node tongue �enclosed by the green curve in Fig. 7�,
which means that up to three period-1 orbits coexist �as in
the loop region of Fig. 5�. Consequently, the A�F� curve for
the period-1 limit cycle contains a loop when r�1. Within

the loop region, the stable period-1 limit cycle undergoes a
period-doubling bifurcation �along the right-hand yellow
curve in Fig. 7�, which produces the period-2 limit cycle
whose A�F� curve �triangles in Fig. 8�a�� reveals large reso-
nant peaks when r=1 and 2.

The electron velocity component vx along the SL axis is a
particularly important dynamical variable because it deter-
mines the electrical current that flows through the device and
the power dissipation rate per particle, Pd=eFvx. It follows
from the equations of motion �6� and �8� that, for each at-
tractor, vx oscillates as a function of time. To determine the
drift component of the electron velocity, which determines
the current flow �15�, we therefore calculate the time average
�vx of the velocity throughout the attractor. Figure 8�b�
shows �vx calculated as a function of F for the attractor
approached by electrons starting from rest with B=2 T and
�=45°. The shape of this graph is similar to the A�F� data
shown in Fig. 8�a�. In particular, there is strong resonant
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FIG. 8. �Color� �a� Amplitude A of pz�t� oscillations calculated
versus F for a stable �unstable� period-1 limit cycle �red �green�
circles� and a stable �unstable� period-2 limit cycle �red �green�
triangles�. Arrows mark positions of r=1 and 2 resonances. �b� �vx
calculated as a function of F for the attractor approached by elec-
trons starting from rest. Peaks labeled R1 �R2� occur at F values
near the r=1 �2� nonlinear resonances. Labels O1 �O2� mark off-
resonance field values for which r=1.52 �2.53�. �c� Orbits ap-
proached by electrons starting from rest at the resonant �R1,R2� and
off-resonant �O1,O2� F values marked in �b�. All attractors are pro-
jected onto the x-z plane �axes inset�, have a common spatial scale
shown by the horizontal line whose length is 30 SL periods, and are
plotted over the same time interval. B=2 T, �=45°, 	=1012 s−1.
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enhancement of �vx near rational r values where maxima
also occur in the A�F� curves calculated for the period-1 and
period-2 limit cycles. The peak labeled R1 in the �vx versus
F curve corresponds to the r=1 resonance of the period-1
limit cycle, whereas peak R2 originates from the r=2 reso-
nance of the period-2 limit cycle. Those peaks to the left of
R1 arise from resonances of the period-1 limit cycle. To re-
late the resonant peaks in the �vx versus F curve directly to
the electron motion, Fig. 8�c� shows segments of period-1
�lower and two upper trajectories� and period-2 �third orbit
down� limit cycles calculated at the field values labeled R1,
R2, O1, and O2 in Fig. 8�b� over a fixed time interval of
12.38 ps. During this time interval, the electron travels much
further along in the two orbits on resonance �R1 and R2�
than in the two off-resonance orbits �O1 and O2�.

To further investigate how resonances affect the electron
transport, we calculated the probability distribution ��vx� of
all the vx values attained during one period of the limit cycles
approached by electrons starting from rest both on and off
resonance. Figure 9 shows normalized ��vx� curves calcu-
lated for the orbits labeled �a� R1, �b� O1, �c� R2, and �d� O2
in Figs. 8�b� and 8�c�. All attainable vx values lie between the
two vertical dashed lines located at vx= �vmax, where vmax
=d� /2� is the maximum velocity of an electron in the low-
est miniband. Comparison of the velocity distributions on
�a�,�c� and off �b�,�d� resonance reveals that, on resonance,
the most probable vx value approaches vmax, thus producing
the large peak �vx values shown in Fig. 8�b�.

The hysteretic response exhibited by the limit cycles as B
is swept up and down through a boundary crisis has a clear
manifestation in the �vx versus B curves calculated for large
F values where the hysteresis is most pronounced, as dis-
cussed in Sec. IV. To illustrate this, Fig. 10 shows �vx cal-
culated as a function of increasing �black curve� and decreas-
ing �curve with green shading underneath� B �upper axis�
when F=106 V m−1 and �=45°. Note that the lower axis of
the graph shows the ratio r�1 /B of the Bloch and cyclotron

frequencies. Near the r=1,3 /2, and 2 resonances �marked by
arrows in Fig. 10�, saddle-node tongues coexist with chaotic
attractors. This can be seen, for example, from Fig. 4�c�,
which, as discussed in Sec. IV, reveals a large overlap be-
tween the r=1 saddle-node tongue and the upper red island
of chaos when F=106 V m−1. As a consequence, the limit
cycle evolves in a different way when B increases or de-
creases, and so the corresponding �vx versus B curves ex-
hibit hysteresis. This hysteresis is particularly pronounced
near the r=1 and r=2 resonances in Fig. 10, which reveals
that for some B values �vx differs by a factor of 2 between
up and down sweeps of B. Since the current flow depends
critically on the electron drift velocity, we predict that mea-
sured I�B� curves should also reveal strong resonant peaks
that exhibit clear hysteresis.

In Fig. 10, we compare the �vx versus B curves obtained
by including dissipation a priori in the equations of motion,
with drift velocities vd�B� calculated using the traditional
Esaki-Tsu approach �3�, based on nondissipative electron tra-
jectories. Within this approach, which we used in our previ-
ous studies of electron transport in SLs with a tilted magnetic
field �14–16,41�,

vd =
1

�
�

0

�

exp�− t

�
	vx�t�dt , �10�

where vx�t�= ẋ is determined from Eqs. �6� and �8�, setting
	=0, and the electron scattering time � includes contribu-
tions from both elastic and inelastic scattering processes
�15�. The vd�B� variation obtained from Eq. �10� is shown by
the dashed curve in Fig. 10. Comparison with the �vx versus
B curves �black and green shaded� reveals that both ap-
proaches give qualitatively similar results, with prominent
maxima at B values close to r=1,3 /2, and 2. However, the
positions of these maxima do not always coincide exactly, in
particular for r=1, mainly because including dissipation a
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priori in the equations of motion shifts the resonances
slightly away from rational values of r, as discussed in Sec.
IV. Although the resonant peaks in the �vx versus B and
vd�B� curves have very similar heights, especially for r=2
and 3 /2, away from the resonances �vx is significantly lower
than vd. The reason for this is that, off resonance, pz in-
creases less rapidly with increasing t, which means that the
damping term 	ṗz in Eq. �6� remains small and therefore
causes less scattering-induced transport.

Figure 10 reveals that, for the SL considered here, the
most pronounced resonant enhancement of �vx occurs near
r=2 �as also shown in Fig. 8�b��. The two other resonances
shown in Fig. 10 near r=1 and 3 /2 weaken as r decreases
because the corresponding increase of B reduces the distance
that the electrons travel along the x axis in a given time
interval �compare, for example, orbits R2 and R1 calculated
for r=2 and 1, respectively, in Fig. 8�c��.

To investigate how such resonances manifest themselves
in the electrical properties of a real device, we measured I�V�
characteristics for the SL studied in Ref. �15�, whose param-
eters are similar to those described in Sec. II. Figure 11
shows the differential conductance G=dI /dV measured as a
function of r at V=0.25 V and �=45°. In the experiments,
we varied B and, for each value, measured I over a very
small range of V near 0.25 V, taking the derivative to find G.
For each B value, we determined the corresponding r�F /B
by assuming that F�V and is uniform throughout the SL.
The dominant feature in Fig. 11 is the pronounced conduc-
tance peak at the r=2 resonance �arrowed�. Additional, far
weaker, features can be seen for smaller r, but are not strong
enough for us to link them definitively to particular r values.
The overall shape of the experimental G�r� curve in Fig. 11
is broadly similar to the �vx versus r plots shown in Fig. 10.
However, only the r=2 conductance peak is clearly visible in
the experimental data. This difference between experiment
and theory occurs because in the actual device, F is not con-
stant throughout the device, as assumed in our present cal-
culations, but varies with x due to the formation of charge
domains �15�. The spatial variation of F means that the reso-
nance condition is only satisfied in a small region of the SL,
which weakens and blurs the resonances in G�r� �16�. This

effect is less pronounced for stronger resonances, at which
the electric field is more uniform through the SL �16�. Con-
sequently, the r=2 resonance is clearly revealed and cor-
rectly positioned in Fig. 11.

VI. SUMMARY AND CONCLUSIONS

We have shown that both Hamiltonian and dissipative
chaos strongly affect the transport of miniband electrons in
biased SLs with a tilted magnetic field. Chaos originates
from a complex nonlinear interaction between Bloch and cy-
clotron oscillations associated, respectively, with the electric
field and magnetic field component, B cos �, along the SL
axis. In the absence of dissipation, the system exhibits non-
KAM chaos, characterized by the formation of intricate sto-
chastic web patterns when �B and �̄c are commensurate.
When weak dissipation is included a priori in the equations
of motion, limit cycles replace the stochastic web filaments
and stable orbits that they enclose. As the dissipation
strength increases, the number of limit cycles and the volume
of phase space occupied by chaotic trajectories both de-
crease. However, for the electron momentum relaxation rates
measured for SLs used in recent experiments �14,15�, chaos
occurs for a wide range of F and B values, usually when �

40° �see Figs. 4 and 7�.

Two distinct bifurcation mechanisms drive the transition
to chaos: a period-doubling cascade, where the onset of
chaos is gradual, and a boundary crisis, which switches
chaos on abruptly. Both mechanisms operate for all tilt
angles in the range 0���90°. For both Hamiltonian and
dissipative models of the electron dynamics, the onset of
chaos occurs near resonances when �B and �̄c are commen-
surate. Such resonances cause an abrupt delocalization of the
electron trajectories, due either to stochastic web formation
in a Hamiltonian picture, or to the creation of attractors cor-
responding to unbounded stable limit cycles when dissipa-
tion is included ab initio in the equations of motion. This
delocalization produces large resonant peaks in the electron
drift velocity, which, in turn, generate the strong resonant
enhancement of the current flow observed in our recent ex-
periments �15�. In the case of dissipative dynamics, the drift
velocity increases near resonances because the most probable
value of vx that the electron attains during its unbounded
limit cycle is very close to the maximal possible value, de-
termined by the SL parameters �Fig. 9�. Resonances between
�B and �̄c also give rise to multistability phenomena when
two or more different attractors coexist in phase space. Mul-
tistability makes limit cycles, and the corresponding �vx val-
ues, evolve differently when F or B sweeps up or down
through a resonance. We expect that this hysteresis will also
have striking experimental signatures. In particular, our cal-
culations suggest that experimental I�B� or I�V� curves will
exhibit pronounced hysteresis, reflecting that shown in Fig.
10 for electron drift velocities, especially at high field values.

Finally, we emphasize that the driven harmonic oscillator
equation �6�, which describes the motion of miniband elec-
trons in a tilted magnetic field, is also of fundamental impor-
tance in many other physical systems, for example, plasma
�18�, ultracold atoms in optical lattices �50–53�, the transmis-
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FIG. 11. Experimental values of the low-temperature �4.2 K�
differential conductance G=dI /dV versus r=�B / �̄c�F /B, mea-
sured for different values of B at fixed V=0.25 V and �=45° for the
SL described in Ref. �15�, whose parameters are similar to those
specified in Sec. II. Arrow marks r=2 resonance.
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sion of light through photonic crystals �54�, and turbulent
flow, and in understanding the patterns of quasicrystals
�19�. Although the motion of the dissipation-free harmo-
nic oscillator driven by a plane wave is well understood,
to our knowledge the effects of dissipation have not previ-
ously been considered. Our study of the rich dynamics of
the dissipative driven harmonic oscillator is relevant to a
wide range of topics in physics, engineering, and applied
mathematics.
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